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1. Introduction 

 

1.1 Background 

In comparison to the energy market, the market for hydrogen in Europe 

is still small.1 Up to now, hydrogen is mainly used as feedstock in the 

chemical industry, for the production of ammonia and methanol in the 

refining industry, where it is used to crack heavier crudes and produce 

lighter crudes, and in the metal industry for the production of iron and 

steel. In the future, however, the market for hydrogen may grow strongly. 

In fact, hydrogen is increasingly seen as a potential energy carrier to 

provide high-temperature process heat, to heat buildings and produce 

electricity while it is also expected that it can become a major fuel in 

transport (Certifhy, 2016; CE Delft, 2018; Hydrogen Council, 2017; IEA, 

2017; Waterstof Coalitie, 2018; Irena, 2018; WEC, 2018). In addition, 

hydrogen may play a role to help the electricity sector to deal with the 

increasing shares of renewable power by offering flexibility regarding the 

timing and location of production (Van Leeuwen & Mulder, 2018). 

Hydrogen does not exist in a pure form in nature and has, therefore, 

to be produced. Currently, the most common method to produce 

hydrogen is the so-called Steam Methane Reforming (SMR), a process by 

which hydrogen is produced from natural gas (CH4). Hydrogen can also 

be produced through electrolysis of water (H2O). Hydrogen produced 

through electrolysis can act as a bridge between the electricity system and 

the gas system, for instance by acting as a source of demand flexibility in 

the electricity market. 

                                                           
1 The total consumption of hydrogen is equal to about 1.3% of the total consumption 
of energy (see Appendix A). 
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 The potential of hydrogen as a key energy carrier has been analysed 

extensively from a technical-economic perspective (see e.g. Götz, et al., 

2016; Cardella et al., 2017). Most of that research focusses on the technical 

feasibility and the production costs at the plant level.2 Less attention has 

been paid, however, to the design of markets for hydrogen.3 It is not 

evident that a well-functioning market of hydrogen will develop 

automatically, even if the production is technically feasible and the overall 

societal benefits exceed the overall societal costs.  

 The development of the hydrogen market may be hampered by so-

called market failures. Market failures are fundamental shortcomings in 

a market design which prevent that the market results in optimal 

outcomes. Examples of such shortcomings are the existence of significant 

economies of scale, network externalities, information asymmetry and 

market power. For each type of market failure, solutions can be put 

forward. Such solutions can be implemented by the market parties 

themselves and/or a regulator. Therefore, an analysis of the existence of 

such shortcomings is required in order to determine to what extent the 

market for hydrogen is able to develop automatically or to what extent 

regulatory intervention is required.  

 

1.2 Research questions  and method of research 

The questions addressed in this report are: Which economic factors drive 

the outlook for a hydrogen market in the Netherlands? To what extent will 

the market for hydrogen move in the direction of a liquid market if there 

is sufficient potential demand and supply? Is there any need for specific 

intervention by market parties or public authorities?  

                                                           
2 For an overview, see for instance: TKI Nieuw Gas, Contouren van een Routekaart 
Waterstof, March 2018. 
3 A research report discussing technical, economic as well as policy aspects of 
hydrogen is IRENA (2018). 
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 We start answering these questions by exploring the economic 

conditions behind the production, transportation and storage of 

hydrogen. Based on information on the economics of hydrogen in 

literature, we calculate the required hydrogen prices for various types of 

production to be profitable. In addition, we determine the investment 

costs for various types of transportation as well as storage.  

 Using the results from this explorative analysis, we formulate a 

number of scenarios regarding the outlook of the hydrogen market. This 

scenario development is based on the primary economic drivers behind 

the competitiveness of hydrogen, which are the tightness of the 

international natural-gas market and the stringency of the international 

climate policy. These factors strongly affect the electricity price and, 

hence, the competitive position of hydrogen produced through 

electrolysis vis-à-vis hydrogen produced through SMR. 

 Having explored the potential outlook of hydrogen consumption and 

supply, we analyse the extent to which the market for hydrogen will 

develop automatically and if sector-specific regulation is required. Using 

the micro-economic framework, we analyse for each component of the 

hydrogen supply chain whether there are specific market failures 

hindering its development and if so, which regulatory solutions can be put 

forward to address these market failures.  

  

1.3 Outline of paper 

The structure of this report is as follows. In Section 2, we explore the 

economic conditions behind the production, transportation and storage 

of hydrogen. In Section 3, we develop the scenarios for the hydrogen 

market in the Netherlands, while in Section 4 we analyse the need for 

sector-specific regulation. In Section 5 we present our conclusions.  
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2. Supply of hydrogen 

 

2.1 Introduction 

The potential supply of hydrogen depends on the economic conditions for 

the various stages of making, transporting and storing hydrogen. In 

Section 2.2, we explore the economic factors that drive the outlook of 

various ways of producing hydrogen, in Section 2.3 the various manners 

of transporting hydrogen and in Section 2.4 the various ways of storing 

hydrogen. In Section 2.5 we explore the consequences of an alternative 

design of the supply of hydrogen. 

 

2.2 Economics of production 

2.2.1 Types of production   

Hydrogen does not exist in pure form in nature and has, therefore, to be 

produced.4 Currently, the most commonly used method to make 

hydrogen is Steam Methane Reforming (SMR). By letting steam (H2O) 

under high temperature react with methane coming from natural gas 

(CH4), hydrogen (H2) can be produced next to carbon monoxide (CO) or 

carbon dioxide (CO2).5 An alternative method is electrolysis in which 

electricity is used to split water (H2O) into hydrogen (H2) and oxygen 

(O2).6  

Both production techniques use different types of energy (i.e. gas in 

case of SMR and electricity in case of electrolysis). SMR typically uses 

natural gas but, technically speaking, one could also use bio-methane, 

which is gas (CH4) produced either from the anaerobic digestion of wet 

                                                           
4 Hence, hydrogen is a secondary energy carrier just as electricity. 
5 Hence, the chemical process is: CH4 + H2O -> CO + 3 H2. Carbon dioxide (CO2) 
is produced when the carbon monoxide (CO) reacts in an additional water-gas shift 
reaction: CO + H2O -> CO2 + H2. 
6 The chemical process: 2H2O -> 2H2 + O2. 
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organic residual materials or from the thermal gasification of dry organic 

residues. Electrolysis uses power, which can be generated in various ways. 

When the electricity is generated through renewable sources, like wind 

turbines or solar panels, the hydrogen is made in a pure renewable way 

and it is therefore called ‘green’. Because often users cannot distinguish 

electricity generated by a renewable source from electricity generated by 

other (non-renewable) sources as all sources are generally connected to 

the same grid, a system of guarantees-of-origin (or certificates) has been 

implemented in Europe as a tracking-and-tracing system. Users of 

electricity (including electrolysis plants) generally need these certificates 

in order to be able to prove that electricity from renewable sources is used. 

In addition, the carbon emissions associated to the production of 

hydrogen can be treated in different ways. If the carbon emitted in the 

SMR process is not captured and stored, the hydrogen is called ‘grey’. Grey 

hydrogen has been produced for many years in the Netherlands and is 

currently the only type of hydrogen being produced in large quantities. If 

the carbon is removed and stored, the hydrogen is called ‘blue’. This 

technique is increasingly considered as an option to produce hydrogen 

without carbon emissions. If bio-methane is used as input in SMR, then 

there would be no net carbon emissions while with carbon capture even 

negative emissions would occur. 

Hydrogen made through electrolysis does not have direct carbon 

emissions but the electricity which is used may be generated by fossil-fuel 

power plants which indirectly results in carbon emissions.  Note, though, 

that both SMR plants and electricity plants do participate in the European 

Emissions Trading Scheme (ETS) by law, which means that a change in 

the level of emissions by one of these plants is fully offset by the responses 

of other participating firms. These responses are triggered by changes in 

the price of carbon resulting from changes in emissions by one firm or 



10 
 

industry. Because the overall level of carbon emissions with the ETS 

industries is completely determined by the emissions cap of the ETS, it 

does not matter for the carbon emissions which type of electricity is used 

for making hydrogen. Based on the above, we define 3 types of SMR as 

well as 3 types of electrolysis (see Table 2.1).  

 

Table 2.1 Types of hydrogen 
Name  Production 

technique 
Type of 
energy used 

Treatment of 
CO2 

SMR-grey Steam Methane  
 Reforming 
 

natural gas emitted 

SMR-blue Steam Methane  
 Reforming 
 

natural gas captured and 
stored (CCS) 

SMR-green Steam Methane  
 Reforming 
 

green gas (no net 
emissions) 

electrolysis-
grey 

electrolysis 
 

electricity (outside of scope 
of electrolyser) 
 
 

electrolysis-    
green 

electrolysis electricity from  
 renewable  
 sources 
 

(outside of scope 
of electrolyser) 
 

electrolysis-
orange 

electrolysis electricity from  
 renewable  
 sources in the  
 Netherlands 

(outside of scope 
of electrolyser) 

 

2.2.2 Method, data and assumptions 

In order to assess the economic outlook for the various ways of producing 

hydrogen, we calculate the minimum price of hydrogen necessary for the 

various technologies to be profitable. This required price is the financial 

compensation needed to cover both fixed and variable costs over the 

lifetime of the hydrogen plants. The fixed costs can be related to the 
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required hydrogen price by making assumptions on the investment costs 

per unit of capacity, the number of hydrogen units produced with one unit 

of capacity and the lifespan of a plant. The data and assumptions used for 

both SMR plants and electrolysis plants are given in Tables 2.2 and 2.3. 

Note that for the electrolysers, we assume almost continuous production 

(8000 operating hours per year), which is only possible if the plants are 

just connected to the electricity grid and not operated based on available 

power generated by for instance a wind turbine. In the latter case, the 

number of operating hours would be much lower, and correspondingly 

the efficiency. In Section 2.5 we will reflect on another type of use of 

hydrogen plants that results in a lower utilisation and therefore efficiency.  

 
Table 2.2 Assumptions on the costs of producing hydrogen  
                      through SMR, per type  

  Assumption per type of SMR 

Variable Grey Blue Green Source 
investment costs in SMR  
 of 323 MW (mln. €) 307 307 307 

Collodi et al. 
(2017) 

total production during  
  lifetime (mln. kg.) 1850 1850 1850 

Collodi et al. 
(2017) 

investment costs in CCS 
  (mln. €)  0 54 0 CBS 
gas needed per kg H2 
(MWh) 0.04 0.05 0.04 

Collodi et 
al.. (2017) 

gas price (€/MWh) 20 20 20 CBS 
CO2 emission per kg H2 
(kg)  9.01 4.12 0.00 

Collodi et al. 
(2017) 

CO2 captured (kg) 0.00 5.18* 0.00 
Collodi et 
al.. (2017) 

CO2 allowance costs  
 (€/ton CO2) 15 15 15 EEX 
cost of CO2 transport  
 and storage per kg (€) 0.00 0.05 0.00 

Collodi et al. 
(2017) 

premium green gas 
(€/MWh) 0.00 0.00 8.19 Gasunie 

Note: * For SMR-blue, we assume an efficiency of the capturing the CO2 of 55% 
(total emissions are 9.3 kg and 5.18 is captured and stored). Higher efficiencies are 
possible, but this would result in higher costs as well. At a 55% capturing rate, the 
costs are minimized according to Collodi et al. (2017). 
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Table 2.3 Assumptions on the costs of producing hydrogen 

                   through electrolysis, per type 

Assumptions Value Source 

input capacity (MW) 20 Chardonnet et al. (2017)  

operating hours/year 8000 idem 

discount rate 5%  

production (mln. kg/y) 43  

CAPEX (mln. €)  15 idem 

annual operation and maintenance  
 costs (mln. €) 0.3 idem 

stack replacement after 10 years  
 (mln. €) 4.15 idem 

fixed costs electrolyser (€/kg) 0.54 idem 

efficiency electrolyser 72%  

water costs (€/kg) 0.01 Waterbedrijf Groningen 

electricity use (MWh/kg) 0.05 Chardonnet et al. (2017) 

electricity price (€/MWh) 47 CBS 

premium Dutch green electricity  
  (€/MWh) 5 Hulshof et al. (2019) 

premium green electricity (€/MWh) 2 idem 

  

2.2.3 Results 

Figure 2.1 shows how the required hydrogen price for the various types of 

hydrogen production through SMR depends on the natural-gas price, 

while Figure 2.2 shows how the required hydrogen price for the various 

types of electrolysis relates to the price of electricity.  

If the natural-gas price is 20 euro/MWh, which is about the average 

price over the past years, SMR-grey needs at least a hydrogen price of 

about 1.50 euro/kg to be profitable.7  If the carbon emissions are captured 

and stored (SMR-blue), the required price increases to about 1.60 

                                                           
7 This is a bit lower than what was found by Dillich et al. (2012), who estimated the 
cost of hydrogen production between 1.74$/kg and 2.03$/kg. 
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euro/kg, while for SMR-green the required price would be about 1.80 

euro/kg. Note that the required price for SMR-blue increases more when 

the natural-gas price increases than SMR-grey (i.e. the line is a bit 

steeper), because of the additional gas demand resulting from carbon 

capture.  

The required hydrogen price for electrolysis plants is a linearly 

increasing function of the electricity price. If the (average annual) 

electricity price is 40 euro/MWh, electrolysis plants need the hydrogen 

price to be at least 2.50 euro/kg. If the hydrogen must be produced with 

electricity generated with renewable sources, the required hydrogen price 

increases with 0.10 euro/kg, as green certificates have to be bought. If, in 

addition, the renewable sources must be located in the Netherlands, the 

required hydrogen price is 0.25 euro/kg higher, as green certificates 

related to Dutch renewable power generation are more expensive 

(because of the tight market conditions) than general green certificates 

(Hulshof et al., 2019). 
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Figure 2.1 Required hydrogen price for SMR in relation to 
                     natural gas price, per type 

 

Figure 2.2 Required hydrogen price for electrolysis in relation  
                      to electricity price, per type 
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In the above calculations we have assumed a CO2 price of 15 euro/ton, 

which is about the average price over the past year. Recently, this price 

has risen sharply, so it makes sense to analyse the sensitivity of the above 

results to the price of CO2. Figure 2.3 depicts the impact of the price of 

CO2 on the required hydrogen price per type of technology. In particular, 

SMR-grey is affected by the price of CO2, as in this technique all carbon is 

emitted. Although the carbon is captured and stored in SMR-blue, there 

are still some emissions during the process of storing, which means that 

the price of CO2 also affects the required hydrogen price of this technique, 

albeit to a smaller extent.8 The break-even price of CO2 is about 30 

euro/ton. At higher carbon prices, SMR-blue is more competitive than 

SMR-grey. 

The CO2 price also affects the required hydrogen price for electrolysis, 

even if the electricity is produced through renewable sources. After all, the 

electricity price is set by the marginal power plant, which is most of the 

time, at least in the Dutch power market, a gas-fired power plant. One 

may, however, assume that a higher CO2 price coincides with higher 

shares of renewables and, as a result, less hours in which these plants are 

the price-setting plants. Hence, when the CO2 price increases, the impact 

on the electricity price reduces, as is shown by Figure 2.3. Nevertheless, 

we find that the CO2 price has an upward effect on the required hydrogen 

price of electrolysis. 

 

 
 
 
 

                                                           
8 Note that the amount of remaining emissions in case of SMR-blue strongly 
depends on the technology used. In our calculations, we assumed a capture rate of 
55%. Higher rates are possible, but that would require more expensive 
technologies. 
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Figure 2.3 Required hydrogen price in relation to price of CO2  
                     allowances, per type of technique 

Note: for the assumptions on the price of natural gas and electricity, see Tables 2.1 
and 2.2. 

 
 
From Figure 2.3, it follows that electrolysis requires a much higher 

hydrogen price than SMR. This is mainly due to the high production costs 

as is shown in Figure 2.4.9 Taking all costs into account and given the 

assumptions made (see Tables 2.1 and 2.2), we find that SMR-grey can 

operate with the lowest hydrogen price. The required price of electrolysis 

plants is about twice as high. 

As the competitive position of SMR versus electrolysis is mainly 

determined by the relative prices of natural gas and electricity, we also 

calculate the break-even price ratios (see Figure 2.5). If the CO2 price were 

10 euro/ton and the natural-gas price were at the average level of the past 

                                                           
9 The production costs mainly consist of the variable input costs (electricity and 
natural gas, respectively) and to a lesser extent capital costs. 
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decade (20 euro/MWh), the price of electricity should be below 17 

euro/MWh in order to make electrolysis based on green electricity more 

competitive than SMR-blue. If the CO2 price were 40 euro/ton, 

electrolysis would still be profitable for a slightly higher electricity price 

(20 euro/MWh). This price is, however, much lower than the past and 

current electricity prices as we will see in Section 3. 

 

Figure 2.4 Cost components of the required hydrogen  price per  
                     type of technique 

Note: for the underlying assumptions, see Table 2.1 and 2.2. 
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Figure 2.5 Break-even prices of natural gas and electricity for  
                     SMR and electrolysis, for different prices of CO2 

 

Note: * indicates the average year-ahead forward price of electricity and natural gas 
over the period 2010-2018 

 

The above analysis is based on static assumptions on the level of costs 

for the various hydrogen production techniques. In the future, the costs 

may change as a result of technological developments, learning-by-doing 
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effects and changing market circumstances. In particular, the costs of 

electrolysis may decrease in the future, which may change the above the 

conclusions. In order to check this, we have calculated the break-even 

electricity and gas prices for electrolysis versus SMR-blue using more 

favourable assumptions on the productivity of electrolysis (Figure 2.6).  

 
Figure 2.6 Sensitivity analysis: break-even prices  
                      electrolysis/SMR in case of lower investments costs  
                      and higher efficiency of electrolysis plants 

Note: * indicates the average year-ahead forward price of electricity and natural gas 
over the period 2010-2018 

 
 
If the efficiency of electrolysis plants increases from the previously 

assumed 72% to 80%, the maximum electricity price an electrolysis plant 

can afford would increase with a few euros per MWh. The same holds if 

the investment costs per unit of capacity of electrolysis plants decreased 

by 25%. If both changes did occur (i.e. higher efficiency and lower 

investment costs), the maximum electricity price affordable for an 

electrolysis plant would increase with about 5 euro/MWh. If the natural-

gas price were 20 euro/MWh (which is the average price over the past 
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decade) and the CO2 price 40 euro/ton, then an electrolysis plant would 

be more competitive than a SMR plant with CCS provided that the average 

annual electricity price is less than 25 euro/MWh. In the next Section, we 

will see that this price is much lower than the past and current electricity 

prices. 

 
2.3 Economics of transportation 

 

2.3.1 Types of transportation 

Transportation of hydrogen can be done in various ways. Currently, 

transportation is mostly carried out by dedicated pipelines. The current 

pipeline infrastructure for hydrogen connects production and 

consumption facilities in Rotterdam, Bergen op Zoom, Terneuzen, 

Antwerpen and several places in Belgium and France.10 

An alternative option for transportation is by road or rail. In both 

cases, transport can be done in two ways. One option is transportation of 

gaseous hydrogen in tube trailers, that can carry up to 1000 kg hydrogen 

per truck. Another possibility is transportation of liquefied hydrogen in 

double-walled insulation tanks, which can carry up to 4300 kg of 

hydrogen per truck and up to 9100 kg per railcar.  

Compared to gaseous hydrogen, the transport of liquefied hydrogen 

has extra costs. First of all, the trucks and railcars require specially 

designed tanks. Besides that, the hydrogen has to be liquefied and often, 

due to users’ demand, be converted into gas again. In this process, boil-

                                                           
10 One of the key players in transport of hydrogen is Air Liquide, who owns over 
1100 km of hydrogen pipelines in the Netherlands, Belgium, western Germany and 
the north of France (TKI Nieuw gas, 2018). Next to owning a network of pipelines, 
Air Liquide is also active in supply and storage of hydrogen. Thus, Air Liquide can 
be seen as a vertically integrated firm when it comes to hydrogen. 
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off by transfers between tanks is around 10-20% with an additional boil-

off of 0.3% per day during transport (Amos, 1998). 

 

2.3.2 Method, data and assumptions 

The costs per unit of hydrogen of a hydrogen gas pipeline depends on the 

costs per meter of pipeline, the quantity of the hydrogen transported per 

meter of pipeline and, finally, additional costs for maintaining the 

pressure within the system through compressor stations. Table 2.4 

presents the assumptions we use to calculate the costs of transport via 

pipelines.  

 
Table 2.4 Assumptions on costs of transportation by pipelines 

Assumptions     Value Source 

β1    0.0008 Krieg (2012) 

β2    0.92 Krieg (2012) 

β3    250 Krieg (2012) 

hydrogen density (kg/m3)  8.51  

velocity (m/s)   15 GTS 

pressure pipelines (kpa)  10000 Tebodin (2015) 

distance compressor stations (km) 80 GTS 

capex compressor stations (€)   4980000 GTS 

Note: Krieg (2012) estimates the costs of a hydrogen pipeline per meter (C) as a 
function of the diameter of the pipeline (D) using the following equation: C = β3 + 
β2 * D + β1 * D2. Hence the costs per meter consist of a fixed component 
independent of the diameter of the pipeline, a component linearly related to the 
diameter and a component that increases with the square of the diameter. 

 

For transport by trucks, the costs depend on the capacity of a truck 

and trailer, the investments required, and the variable costs related to the 

use of energy and labor. Table 2.5 summarizes the assumptions we use to 

calculate the costs of transport by trucks. 

 



22 
 

Table 2.5 Assumptions on costs of transportation by trucks 

Assumptions Value Source 

quantity (kg/truck) 1000 Reuss et al. (2017); Linde Group 

lifespan (years) 12 Reuss et al. (2017); Amos (1998) 

CAPEX Truck (€) 160000 Reuss et al. (2017) 

CAPEX Trailer (€) 550000 Reuss et al. (2017) 

fuel costs (€/km) 0.47 Amos (1998); Reuss et al. (2017); CBS 

total wage costs (€/km) 0.38 Amos (1998); Reuss et al. (2017); CBS 

 

2.3.3 Results 

The investments required for building a hydrogen pipeline infrastructure 

are a slightly increasing function of the diameter of the pipeline (Figure 

2.7). The capacity of the pipeline increases more strongly if the diameter 

increases and this effect is stronger the higher the pressure in the system 

(Figure 2.8). As a result, the cost of transporting hydrogen via pipelines 

has economies of scale. The higher the diameter the lower the average 

investment costs. In other words: a pipeline of 600 mm has the same 

capacity as 4 pipelines each of 300 mm, while the total investments 

required are about 50% (Figure 2.9). Hence, hydrogen transportation via 

pipelines can be regarded as a natural monopoly, which has consequences 

for the optimal design of the market. 

The costs of hydrogen transport by truck strongly increase with 

distance, which implies that the variable costs related to the use of fuel 

and labour are much more important than the fixed costs related to the 

investment in trucks and trailers (see Figure 2.10). The low share of fixed 

costs in the total costs imply that this type of transportation is not 

characterised by economies of scale. 
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Figure 2.7 Installation costs of a hydrogen gas pipeline in  
                     relation to the diameter of the pipeline 

 

 
Figure 2.8 Capacity of hydrogen gas pipeline in relation to 
                      diameter of pipeline and the velocity of gas flow  
                     (meter/second) 
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Figure 2.9 Capital expenditure (CAPEX) of investments in a  
                      hydrogen gas pipeline in relation to distance and  

 

Figure 2.10 Costs (CAPEX and OPEX) of hydrogen transport 
                         by truck in relation to distance 
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2.4 Economics of storage 

2.4.1 Types of storage 

Over the years, various types of hydrogen storage have been investigated, 

but until now, only two storage methods are proven and in actual use. 

These methods are high-pressure tanks for small-scale storage at for 

instance refueling stations, and empty salt caverns for larger scale storage. 

The capacity of tanks is about 45 MWh, which is equal to the annual gas 

consumption of 3 Dutch households, while the capacity of salt caverns can 

be 150 GWh, which is equal to the annual gas consumption of 10,000 

Dutch households.  

A third potential option for storing hydrogen is using depleted gas 

fields which can possibly be used for large-scale storage. However, there 

is no experience with this storage method yet. 

 

2.4.2 Method, data and assumptions 

The costs of the various methods mainly depend on the capacity and the 

required investments expenditures. The capacity of storage is related to 

the working volume, which is the volume of hydrogen that can be stored, 

and the amount of hydrogen that can be injected and withdrawn in a 

specific period of time. A specific type of investment is related to cushion 

gas, which is the volume of hydrogen needed to be permanently within the 

storage facility in order to have sufficient pressure. Table 2.6 presents the 

assumptions we have used to calculate the costs of storage of hydrogen in 

a salt cavern and a depleted gas field.  
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Table 2.6 Assumptions on costs of storage 

Assumptions Value Source 
installation costs salt cavern 
 (mln. €) 30 Kruck et al. (2013) 
costs cushion gas salt cavern  
 (mln. €) 4.98 idem 
working gas salt cavern  
 (TWh) 0.14 idem 
installation costs depleted gas field 
 (mln. €) 375 idem 
costs cushion gas depleted gas field 
 (mln. €) 469 idem 
working gas depleted gas field 
 (TWh) 7.8 idem 
 

2.4.3 Results 

The required investment in a salt cavern per unit of MWh is about four 

times as high as the investment required for a depleted gas field (Figure 

2.11). However, gas storage is typically characterised not only by its 

volume, but also by its capacity, and more specifically, its send-out 

(production) capacity and send-in (storing) capacity. When these capacity 

are important for the service that the storage provides, the economic 

picture may be different. For this study, we assume that seasonal storage 

is the most relevant service of hydrogen storages. 
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Figure 2.11 Investment costs per MWh for two types of storage 

 
 
2.5 Alternative design of hydrogen production through electrolysis 

In the previous analysis we assumed that the business case of electrolysis 

plants is strongly related to the price of electricity. We also assumed that 

the plants are connected to the electricity grid which implies that they 

have continuous access to electricity. As a consequence, the operator 

needs to buy green certificates if she wants to make green hydrogen. 

An alternative design of the hydrogen supply is that the electrolysis 

plants operate in close connection to wind turbines. A benefit of such a 

design is that the electricity generated by these wind turbines need not to 

be transported through an electricity grid; instead, the hydrogen itself has 

to be transported. If the infrastructure for transporting hydrogen is 

already present, such as in the form of an existing natural-gas network, 

then there might be significant savings on network costs. A plan with 

these features has recently been presented by the TSOs of the Dutch high-

voltage network and the Dutch high-pressure gas network 
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(Gasunie/TenneT, 2019). Here, we briefly evaluate the business case of 

this plan. 

The costs of connecting offshore wind parks to the electricity grid 

have been estimated by several studies. Based on these studies, we assume 

that the network costs of connecting offshore wind parks are 20 

euro/MWh.11 Producing hydrogen offshore spare these costs. We assume 

that there neither adapting the natural-gas network to the requirements 

of hydrogen transport nor building the offshore hydrolysis plants involves 

additional costs, which is of course too optimistic and results in an 

underestimation of the costs of this project. 

Another benefit of producing the hydrogen offshore in direct 

connection to the electricity production by wind turbines is that there is 

no need to buy green certificates, as there is already full transparency on 

the (green) origin of the electricity. 

The close connection between an electrolysis plant and a wind park 

also implies that the cost of using electricity is not related to the market 

price, but to the electricity price the investors in the wind turbines require 

to recoup their investments and operational costs. The price of the 

electricity can be estimated on the basis of the price in the recent tenders 

                                                           
11 Algemene Rekenkamer (2018), referring to the study ECN, mentions a cost of 25 
euro/MWh. They also state that these costs should reduce to 15 euro/MWh because 
of the agreement made between the State and the network operator. They also refer 
to a statement by TenneT that the current costs are about 15 euro/MWh, but that 
in the future the costs will be higher because the offshore wind parks will be located 
further away from the shore. Another source of information is the cost-benefit 
analysis made by Decisio (2018). They conclude that for 7500 MW offshore wind 
park the total investment in networks is about 8 billion euro’s; meanwhile about 7 
billion euro is needed for operating and maintenance costs during the lifetime of 
30 years of the project. Using these data and assuming a capacity factor of 50% and 
a discount rate of 3%, we find that the (present value of the) total network costs are 
about 20 euro/MWh. 
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for offshore wind parks. Based on Algemene Rekenkamer (2018), we set 

this price at 45 euro/MWh.12  

Producing the hydrogen when the wind turbines generate electricity 

implies that the utilisation rate of the electrolysis plant is determined by 

the capacity factor of the wind turbines. We assume that the capacity 

factor of the offshore wind turbines is 50%. In the previous sections we 

have seen that a lower utilisation of electrolysis plants decreases the 

efficiency, while also a higher return per operating hour is required in 

order to recoup the investment costs.  

 

Figure 2.12 Impact of potential grid savings on required  
                       hydrogen price of electrolysis 

Note: the grid savings can be seen as social benefits for which the investor in the 
offshore electrolysis plant is remunerated in one way or the other. 

                                                           
12 The price in the latest tender was 43 euro/MWh, but on top of that the investor 
in the wind turbines receives revenues from selling green certificates which have a 
value of about 2 euro/MWh. 



30 
 

 

Based on these assumptions, we are able to calculate the required 

hydrogen price of an electrolysis plant which is directly connected to an 

offshore wind farm (Figure 2.12). Because of the lower utilisation and 

efficiency, the total costs per unit of hydrogen are significantly higher than 

when the hydrogen is produced on an almost continuous basis (3.9 

euro/MWh versus 2.9 euro/MWh). The savings of this project in terms of 

the unneeded extensions of the offshore electricity grid are estimated at 

1.2 euro/kg. These benefits reduce the required hydrogen price to make 

this project profitable to 2.65 euro/MWh, which is below the price of a 

hydrogen plant which produces continuously, but also significantly above 

the price required by SMR-blue production. 
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3. Scenarios: outlook for hydrogen demand and supply 

 

 

3.1 Introduction 

Using the insights on the economics behind the supply of hydrogen, we 

formulate a number of scenarios regarding the future outlook of supply 

and demand in the Netherlands. We assume that the demand for 

hydrogen is mainly driven by the relative end-user prices, as in the long 

run transaction costs to move from one commodity to the other are less 

relevant. We also assume that in the long run, the infrastructure costs for 

energy users are similar as they are likely largely socialized. Hence, the 

scenarios are based on different future end-user prices, which depend on 

the commodity prices plus additional taxes imposed by the government.  

It is important to realise that scenarios should not be seen as 

forecasts, but as conceivable and internally consistent stories about the 

future market development. The purpose of making scenarios is to think 

systematically on what might or should happen. The latter types of 

scenarios are called normative and start from objectives regarding the 

situation at the end of a period and then analyse via which alternative 

routes these objectives can be realised. Example of this type of scenarios 

are EC (2011) and WEC (2018). In this paper we use the former type of 

scenarios, generally referred to as explorative, which depart from the 

current situation and make story lines regarding the driving factors which 

affect the decisions of governments, firms and consumers. Below we first 

discuss the driving factors, the story lines and the method of 

quantification (Section 3.2), before presenting the results, i.e. the 

quantitative outlook per scenario (Section 3.3). 
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3.2 Method 

3.2.1 Driving factors 

From the analysis in Section 2, it follows that three economic factors are 

the key drivers behind the future development of hydrogen, namely, the 

tightness of international natural-gas markets, the stringency of 

(inter)national climate policy and the electricity price. The tightness of the 

gas market depends on global developments in supply and demand, such 

as discoveries of new resources, technological developments in 

exploration and production and energy policies around the globe, such as 

regarding the generation of electricity. The tightness of the market is 

reflected in the price of natural gas. The stringency of climate policy also 

depends on international developments, in particular on the extent to 

which countries agree on policy targets. This stringency translates into the 

price of CO2.13 These factors determine the extent to which hydrogen can 

compete with natural gas as a feedstock and/or as fuel for heating in 

industry and residential sectors and with gasoline in transport. In 

addition, these factors also determine which technique for making 

hydrogen is most competitive.  

 The prices of natural gas, electricity and CO2 are mutually related.  

The price of natural gas results from a global market and can be treated 

as exogenous from the perspective of the Netherlands (Hulshof et al., 

2016). The relevant electricity price, however, results from the Northwest-

European market in which gas-fired power plants are still often the price 

setting plants. This means that the marginal costs of these plants are a 

major factor behind the electricity price. These marginal costs mainly 

                                                           
13 By the price of CO2, we not only mean the price of CO2 allowances for firms which 
operate within the European Emission Trading Scheme, but also other types of 
(implicit) prices on the emissions of CO2, such as through a tax imposed on the use 
of fossil energy, a tax on gas consumption, or regulatory constraints on the use of 
fossil energy. 
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depend on the price of natural gas and the price of CO2 allowances in the 

European ETS. As a result, the higher the price of natural gas or the higher 

the price of these allowances, the higher the electricity price will be, as can 

be seen in Figure 3.1.14 In this figure we observe that even the year-ahead 

forward prices are fairly volatile. During the period 2010-2018, the price 

of  natural gas fluctuated between 10 to 30 euro/MWh (average price was 

about 20 euro/MWh), the CO2 price between less than 5 and 25 euro/ton 

recently (average price was about 10 euro/ton), and the price of electricity 

between 25 and 60 euro/MWh (average price was about 45 euro/MWh). 

 

Figure 3.1 Daily year-ahead forward prices of natural gas, CO2 
                     and electricity (baseload), 2010-2018 

Source: Bloomberg 

 

                                                           
14 Using the data on the daily year-ahead forward prices for gas, CO2 and electricity 
over the period 2010-2018, we find the following relation based on OLS regression: 
Electricity price = 6.74 + 1.34 Gas price + 1.02 CO2 price + error term, where all 
coefficients are highly significant and with a R2 of 91%. 
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This relationship between these prices is an important factor for the 

analysis of the competition between the two types of hydrogen 

production: SMR and electrolysis. A higher price of natural gas or CO2 not 

only raises the required hydrogen price of SMR, but indirectly also the 

required hydrogen price for electrolysis plants. This impact of the natural 

gas price on the electricity price will, however, be weaker when the share 

of renewables in the electricity system increases. A higher share of 

renewables implies, after all, a higher likelihood that renewable plants 

(like wind turbines, solar parks) are the price setting plants. For the hours 

in which this is the case, the electricity price and the gas and CO2 prices 

are fully decoupled, while the electricity price may go to almost zero as the 

marginal cost of renewable power is close to zero.  

In many hydrogen studies such situations are welcomed as these 

‘oversupply situations’ make electricity cheap, which gives electrolysis a 

competitive position compared to SMR. However, economic intuition 

suggests that hours of oversupply in which the almost-zero marginal costs 

determine the electricity price will not happen very frequently for 

otherwise the investors in renewable energy projects would choose to 

place their funds in other investment opportunities. In order to realise a 

reasonable return in the long term, investors in renewable electricity 

generation will invest an amount that results in a sufficient number of 

hours with high prices. Hence, it is expected that there will always be a 

number of hours in which other plants, in particular gas-fired power 

plants, remain determining the electricity price. However, the higher the 

marginal costs of these power plants (resulting from higher prices of 

natural gas or CO2), the less hours of positive prices the investors of 

renewables need in order to recoup their investments.  

The costs of using electricity not only depend on the electricity price, 

but also on the price of green certificates if the hydrogen is supposed to be 
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produced by renewable energy. The market of green certificates is not very 

liquid and transparent, but from Hulshof et al. (2019) we can infer that 

the price of unspecified green certificates is about 1 euro/MWh. If the 

hydrogen must be produced by using Dutch renewable energy, then the 

producer needs to buy green certificates originating from Dutch 

renewable electricity production (wind mills, solar parks). It appears that 

the price is significantly higher (in the range of 5 to 10 euro/MWh), as this 

market is tight due to the limited supply compared to the demand. This 

implies that a product like ‘Orange Hydrogen’ (which is fully produced in 

the Netherlands) requires a much higher hydrogen price than 

‘Electrolysis-green hydrogen’ and ‘Electrolysis-grey hydrogen’. 

 

3.2.2 Story lines 

Because the electricity price strongly depends on the prices of natural gas 

and CO2, the latter two factors are the key exogenous factors affecting the 

economic outlook of hydrogen. Therefore, we develop our scenarios on 

the basis of two dimensions: the tightness of international markets for 

natural gas and the stringency of (inter)national climate policy (see Figure 

3.2). This results in four possible storylines: high gas prices and a lenient 

climate policy (Fossil-fuel economy), low gas prices and a lenient climate 

policy (Natural Gas economy), low gas prices and a stringent climate 

policy (Blue hydrogen economy) and high gas prices and a stringent 

climate policy (Green economy).15 The next step in the scenario 

development is determining the consequences for the price of electricity 

in each storyline.  

In Fossil Fuel economy, the baseload electricity is generated by coal-

fired power plants. Because these plants have relatively high fixed costs, 

                                                           
15 The names for these scenarios will be clear when we have presented the outcomes 
regarding the composition of energy production and use. 
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it is more efficient to have plants with lower fixed costs like gas-fired 

plants to take care of flexibility as that means that the annual number of 

running hours is lower. With the electricity price set by the latter plants 

for a substantial number of hours, the result is a high average annual 

electricity price.  

 
Figure 3.2 Electricity prices in four scenarios based on 
                      tightness global gas markets and stringency of  
                      climate policy 

 

In Natural Gas economy, gas-fired power plants are responsible for 

the majority of electricity generation, both for baseload and flexibility, as 

they outcompete coal-fired power plants because of the low gas price. As 

a result, also here the electricity price is set by these plants, which results 

in a low electricity price.  

In Blue Hydrogen economy, the stringent (inter)national climate 

policy is translated into a high carbon price as well as high taxes on the 

use of natural gas by industry and households in order to give incentives 

to energy users to become more energy efficient. The high carbon price 
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raises the electricity price, which fosters the business case of investments 

in renewable electricity capacity. As a result, in a number of hours this 

capacity will be price setting, resulting in zero electricity price because of 

the zero marginal costs of the renewable techniques. In the remaining of 

the time, the electricity price is set by gas-fired power plants.  

In Green economy, a stringent climate policy is implemented in a tight 

international gas market environment. The tight gas market may be due 

to energy policies all over the globe which promote the use of gas instead 

of for instance coal. Consequently, the variable costs of gas-fired power 

plants are raised by both a high natural-gas price and high carbon prices. 

As a consequence, the electricity price is high when these plants are price 

setting. High prices during these hours strongly foster investments in 

renewable electricity capacity, resulting in many hours in which this 

capacity is price setting and, hence, the electricity price is zero. Note that 

in the long run, this number of hours cannot be too large as investors in 

renewable capacity need a sufficiently high number of hours in which they 

can realise revenues to recoup their investments. 

Using data on actual prices and taxes in the recent past, we translate 

these storylines into estimates of the commodity prices in each scenario 

(see Table 3.1). As the average gas price (year-ahead forward) over the 

past 10 years was about 20 euro/MWh, while fluctuating between 15 and 

25 euro/MWh (see Figure 3.1), we set the gas price at 25 euro/MWh when 

the gas market is assumed to be tight and at 15 euro/MWh when the 

market is loose. For the CO2 price, we set the price at 10 euro/ton in case 

of a lenient climate policy (which is about half of the current price) and at 

50 euro/ton in the stringent climate policy (which is more than twice the 

current price). 

For the scenarios with a lenient climate policy, we state that 

renewable plants are never price setting. In the Blue-hydrogen scenario 
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we set the percentage of hours these plants set the electricity price at 30% 

of all annual hours and in the Green scenario at 70%.16  

 

Table 3.1 Assumptions on gas prices and climate policy and  
                   consequences for electricity price, per scenario 

Commodity price / tax Scenario 

  
Fossil 
fuel 

Natural 
gas 

Blue 
hydrogen Green 

gas price (€/MWh) 25 15 15 25 

CO2 price (€/ton) 10 10 50 50 
price electricity if gas plant is  
 price setter (€/MWh) * 51 37 78 91 
price electricity if gas plant is 
 not price setter (€/MWh) 0 0 0 0 
percentage of hours  
 renewable plants are price  
 setter  0% 0% 30% 70% 
average electricity price   
 (€/MWh) 51 37 55 27 
tax on natural gas 
  - households (€/MWh) 10 10 35 35 

  - industry (€/MWh) 1 1 30 30 
tax on electricity households 
  (€/MWh) 12 12 25 25 

Note: * price of electricity is calculated using the results of OLS estimation on daily 
data on year-ahead forward prices over period 2010-2018: Electricity price = 6.73 
+ 1.34 * Gas price + 1.02 CO2 price. 

Besides the (international) CO2 price resulting from the European 

emissions trading scheme, there are national taxes on the use of natural 

gas (and other fossil fuels). Currently, households in the Netherlands pay 

about 30 euro/MWh and the industry (large users) about 1 euro/MWh (as 

                                                           
16These percentage are based on the economic principle that in equilibrium 
investors in renewable energy capacity will receive sufficient revenues to recoup 
their investments, but not more than that. Assuming a CAPEX of a wind turbine of 
750,000 euro/MW, a capacity factor of wind turbines during the hours that gas-
fired plants are price setting of 20% (as in many of these hours there will be no 
wind), a discount factor of 5% and lifetime of the wind turbine of 15 years, the 
present value of the flow of revenues generated by the investment is about equal to 
the investment costs.  
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marginal tariff).17 We assume in the scenarios with a lenient climate policy 

that the tax for households is reduced to 10 euro/MWh, while the industry 

tax remains the same. In the stringent climate policy, we assume that the 

tax for households increases to 35 euro/MWh, and for industry strongly 

increases to 30 euro/MWh.  

 

3.2.3 Quantification 

Having set the various commodity prices and taxes for each scenario, we 

are able to make a quantitative outlook for the use and supply of energy 

per type of carrier. The basic assumption behind this outlook is that 

energy users make their decisions regarding the type of energy on the 

basis of the relative end-user prices, which are a function of the 

commodity prices and the taxes. This implies that we ignore transaction 

costs to move from one commodity to the other and that we also assume 

that the infrastructure costs for energy users are similar.18 

In the Fossil Fuel and the Natural Gas scenario, hydrogen produced 

through SMR without the use of CCS has the lowest required price (Table 

3.2). In the Blue Hydrogen scenario, hydrogen produced with SMR plus 

the use of CCS has the lowest required hydrogen price, while in the Green 

scenario, hydrogen through electrolysis on the bases of renewable sources 

and hydrogen based on SMR-blue have both the lowest required price. 

 

 
 
 
  

                                                           
17 Source: www.belastingdienst.nl 
18 In the long run, transactions costs are not that relevant. Moreover, it is not 
unrealistic to assume that the infrastructure costs will be socialized, reducing the 
impact on decisions on micro level. 
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Table 3.2 Required hydrogen prices per type of technology,  
                    per scenario (€/kg) 

Type of hydrogen 

Scenario 
Fossil 
fuel 

Natural 
gas 

Blue 
hydrogen Green 

SMR-grey  1.64 1.15 1.51 2.00 

SMR-blue  1.74 1.23 1.40 1.90 

Electrolysis-green 3.08 2.40 3.28 1.92 
Note: red numbers indicated the lowest price(s) per scenario. 

 

 

Although SMR-grey results in the lowest required hydrogen price in both 

the Fossil Fuel and the Natural Gas scenario, in both scenarios the end-

user price (including taxes) of natural gas is lower for industry as well as 

households (Table 3.3). In the Blue Hydrogen scenario, however, the 

price of hydrogen is lower than the end-user price of natural gas for 

industry and households, while the end-user price of electricity is also 

higher than the price of hydrogen. In the Green scenario, the end-user 

price of natural gas is higher than the price of hydrogen and electricity 

 

Table 3.3 End-user prices per type of energy and user, per  
                   scenario (€/MWh) 

Type of energy and user 
 

Scenario 
Fossil 
fuel 

Natural 
gas 

Blue 
hydrogen Green 

hydrogen 45 32 39 53 

natural gas for households 35 25 50 60 

natural gas for industry 26 16 45 55 

electricity for households 63 49 80 52 
Note: red numbers indicated the lowest prices per scenario. 
 

 

In order to translate the end-user prices of the various energy carriers 

into volumes of consumption per type of energy per sector per scenario, 
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we have to make a number of assumptions on the current volumes of use 

and efficiencies and how they may develop. Table 3.4 provides our 

assumptions on the current efficiencies of engines in various modes of 

road transport, while Table 3.5 presents the assumptions regarding the 

current efficiencies in electricity generation.  

 

Table 3.4 Assumptions on efficiency of engines in transport 

Variable Value 

Fuel efficiency (l/100km)  

 passenger cars 6.7 

 vans 10 

 trucks 22 

 special vehicles 25 

 buses 29 

Hydrogen fuel cells efficiency (kg/km) 

  passenger cars 0.01 

  delivery vans 0.02 

  trucks, trailers, buses 0.04 

Efficiency electric cars (kWh/km) 

  passenger cars  0.2 

  vans 0.35 

  trucks 0.7 

  buses  1 

Source: see Moraga & Mulder (2018) 

 

Table 3.6 presents our assumptions regarding the changes in volumes and 

efficiencies in industry, households and mobility for each of the four 

scenarios. Here, the general idea is that the growth in volume is negatively 

related to the level of end-user prices, while the efficiency improvement is 
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positively related to these prices.19 In the Natural Gas scenario, where 

energy prices are low, the annual growth of the industry and the mobility 

sector is set at 1.5% and 1.25% respectively, while in the Green scenario, 

with much higher energy prices, this growth is set at 0.5%. At the same 

time, the annual change in efficiency in the Green scenario is the highest 

of all scenarios, while in the Natural Gas scenario, the annual efficiency 

improvement is assumed to be only 0.75%. 

 

Table 3.5 Assumptions on efficiency of power plants in 2018 

Variable Value 

Efficiency power plants  

  gas-fired power plants 42% 

  coal-fired power plants 40% 

  other fossil-fuel plants 40% 

Capacity factor  

  wind turbines 40% 

  solar panels 10% 
Source: see Moraga & Mulder (2018) 

 

The annual growth in market shares of hydrogen, heat pumps and 

district heating are based on the relative prices on these energy systems 

(see Table 3.2). In the Green scenario, for instance, electricity for 

households is the least expensive energy carrier, strongly stimulating the 

use of heat pumps and electric cars. In the Blue Hydrogen scenario, the 

industry will change to blue hydrogen instead of natural gas because this 

is more profitable. 

 
 

                                                           
19 Higher energy prices result in higher product prices which reduce demand and, 
hence, production. In addition, higher energy prices incentivize activities to reduce 
energy consumption per unit of output resulting in higher energy efficiencies. 
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Table 3.6 Assumptions on development per sector per  
                    scenario, annual change in 2018-2050 

  Scenario 

Variable 
Fossil 
Fuel 

Natural 
Gas 

Blue 
Hydrogen Green 

Industry     

annual production growth 1.0% 1.5% 1.0% 0.5% 

annual efficiency change  1.0% 0.75% 1.0% 1.25% 
annual growth use of  
 hydrogen 0% 0% 3% 3% 

Households     
annual growth number of  
 households 0.5% 0.5% 0.5% 0.5% 
annual efficiency change  
 heating 1.0% 0.8% 1.0% 1.3% 
annual growth in market  
 share of:     

  hydrogen 0.0% 0.0% 2.5% 0.3% 

  heat pumps 0.0% 0.0% 0.0% 2.2% 

  district heating 0.0% -0.2% 0.5% 0.5% 
 
initial efficiency heat  
 pumps (COP) 3 3 3 3 
annual efficiency change  
 heat pumps 0.0% 0.0% 1.0% 1.25% 

Mobility     

annual growth road traffic 1.0% 1.25% 1.0% 0.5% 
annual efficiency change  
 engines 1.0% 0.75% 1.0% 1.25% 

annual growth in market  
 share of:     
  hydrogen passenger  
    cars/delivery vans 0% 0% 2% 0% 

  electric passenger  
    cars/delivery vans 0% 0% 1% 3% 
  hydrogen trucks, trailers and 
    buses 0% 0% 2% 3% 

Note: the growth rate for the market shares of hydrogen, electricity and heating 
systems are based on assumed markets shares for 2050 based on the relative 
energy prices per scenario. 
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The hydrogen supply side strongly grows in the Blue Hydrogen scenario. 

In this scenario, blue hydrogen has a lower end-user cost than grey 

hydrogen and natural gas, strongly stimulating the market share of this 

energy carrier (Table 3.7). In the Green scenario, both blue hydrogen and 

green hydrogen from electrolysis see increasing market shares, while grey 

hydrogen fully disappears. In the other two scenarios, the hydrogen 

supply remains small and only based on SMR-grey. 

The electricity sector also develops very differently across the 

scenarios. In the Fossil Fuel scenario, new investments are made in coal-

fired power plants because of the low carbon price and high natural-gas 

price. In all other scenarios, in particular the scenarios with a stringent 

climate policy, no now coal-fired plants are built while the existing plants 

are closed. 

In the Fossil Fuel and the Natural Gas scenarios, there are no 

incentives anymore to invest in renewable energy capacity. Hence, we 

assume that in these scenarios the installed capacity reduces gradually 

over time. In the other two scenarios, and in particular in the Green 

scenario, there are strong incentives to invest in renewables. In addition, 

in these two scenarios with a stringent climate policy, we assume that 

there are more improvements in renewable technology, resulting in a 

strong annual increase of the capacity factors. 

Note that the gas-fired power plants are treated as residual suppliers, 

which means that they adapt to what is needed to fulfil demand, just as in 

Moraga and Mulder (2018). In the scenarios with high natural-gas prices, 

we assume that the efficiency of gas-fired power plants increases more 

than in the other scenarios, while in the scenario with the lowest prices 

(Natural Gas scenario), the annual efficiency improvement is low. 
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Table 3.7 Assumptions on development in hydrogen and  
                   electricity sector, per scenario, annual changes in  
                   2018-2050 

  Scenario 

Variable 
Fossil 
Fuel 

Natural 
Gas 

Blue 
Hydrogen Green 

Hydrogen production, annual change market share 

  electrolysis 0% 0% 0% 2% 

  SMR - grey 0% 0% -3% -3% 

  SMR - blue 0% 0% 3% 2% 

Electricity production     

annual change in production per type 

  coal-fired plants (%)  3% -1% -8% -8% 

  other fossil fuel plants (%)  3% -3% -14% -14% 

  nuclear plants (%)  3% -8% -8% -8% 

  wind turbines until 2030 * -0.6 -0.6 1.5 4.4 

  wind turbines after 2030 * 0.0 0.0 1.4 2.8 

  solar panels until 2030 * -0.1 -0.1 0.3 1.1 

  solar panels after 2030 * 0.0 0.0 0.4 0.7 

  biomass (%) 1% 1% 3% 6% 
  net import (if negative, this  
  refers to export) (%) 3% 0% 0% 3% 

annual efficiency change per type of plant (%)   

  gas-fired power plants 1.25% 0.75% 1.0% 1.5% 

  coal-fired power plants 1.0% 1.0% 1.0% 1.25% 

  other fossil fuel plants 1.0% 1.0% 1.0% 1.25% 

annual improvement in capacity factor (%)   

  wind turbines 0.5% 0.5% 1.0% 1.3% 

  solar panels 0.5% 0.5% 1.0% 1.3% 

Electricity consumption     
autonomous annual change 
(%) 0.5% 1.0% 0.5% 0.25% 

Note: The growth rate for the market shares of hydrogen, electricity and 
heating systems are based on assumed markets shares for 2050 based on 
the relative energy prices per scenario (* is in TWh). 
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3.3 Results 

3.3.1 Energy use per sector 

Departing from data on the current type of energy use and using the above 

assumptions, we get a quantitative outlook of the use of energy per type 

of carrier per sector per scenario. In the Fossil Fuel and the Natural Gas 

scenario, the use of natural gas by the industry increases, while in the 

other two scenarios, this use gradually declines and completely vanishes 

by 2050 (see Figure 3.3). In the Green scenario, also the total energy use 

reduces over time because of the improved efficiency which is induced by 

the high end-user prices. 

 
Figure 3.3 Use of natural gas and hydrogen in the industry,  
                      per scenario, 2018-2050 
 

 
 

In the Blue Hydrogen and the Green scenario, also the households 

stop consuming natural gas (Figure 3.4). In the former scenario, it is 

mainly replaced by hydrogen, while in the Green scenario many 
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households use heat pumps to heat their houses, while also a group of 

houses becomes connected to a district heating system. A similar story 

holds for the mobility sector: in the Green scenario all cars become fully 

electric, while in the Blue Hydrogen scenario, hydrogen and full-electric 

cars coexists (Figure 3.5). 

 
Figure 3.4 Energy use for heating by households per type of  
                      energy carrier, per scenario, 2018-2050 
 

 

3.3.2 Hydrogen consumption and supply 

The scenarios not only differ in the amount of hydrogen consumption, but 

also in how the hydrogen is produced. In the Fossil Fuel and the Natural 

Gas scenarios, hydrogen demand remains small and this demand is met 

through SMR-grey (Figure 3.6). In the Blue Hydrogen scenario, hydrogen 

demand increases strongly from the current 120 PJ to about 1000 PJ in 

2050. This hydrogen is completely produced through SMR in 

combination with CCS at that time. In the Green scenario, the hydrogen 

supply increases to about 500 PJ, which is produced both through SMR-
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blue and electrolysis. The reason for the latter is that the required prices 

of both types of hydrogen are fairly similar. 

 
Figure 3.5 Energy use in road transport, measured in distance      
                     covered by various types of cars, per scenario, 2018- 
                     2050 

 

Figure 3.6 Origin of hydrogen supply, per scenario, 2018-2050 
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3.3.3 Electricity consumption and supply  

In all scenario’s the total annual electricity consumption increases from 

the current 120 TWh to about 140 TWh in 2050, except in the Green 

scenario where the electricity consumption more than doubles, reaching  

about 250 TWh (Figure 3.7). This strong increase is due to the relatively 

high end-user price of natural gas and the relatively low price of 

electricity, which stimulates electrification in heating, road transport as 

well as hydrogen production.  

In the Fossil Fuel scenario, the electricity is mainly produced by coal 

and gas-fired power plants and in the Natural Gas scenario mainly by gas-

fired plants only (Figure 3.8). In the other scenarios, the share of 

renewable sources (wind, solar and biomass) is much higher which holds 

in particular for the Green scenario. As higher shares are not possible 

because of the economics of investments in renewable energy (see Section 

3.2.2), natural-gas fired plants are required to fill the gap between 

demand and supply by other sources.  

 

Figure 3.7 Total electricity demand, per scenario, 2018-2050 
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Figure 3.8 Origin of electricity supply, per scenario, 2018-2050 
 

 

The high shares of renewable generation in the Green scenario require 

huge investments in wind turbines and solar panels (Figure 3.9). In 

2050 the total installed capacity should be about 80 GW, while the 

current level is about 6 GW.  

 
Figure 3.9 Installed capacity wind turbines and solar panels,  
                      per scenario, 2018-2050 
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3.3.4 Natural gas demand 

In the Green scenario, the total consumption of natural gas reduces 

strongly, from the current 40 bcm to about 15 bcm in 2050 (Figure 3.10). 

The remaining gas consumption in this scenario is related to the 

production of hydrogen through SMR as well as electricity generation by 

gas-fired power plants (see Figure 3.6). Also, in the Fossil Fuel scenario 

the consumption of natural gas declines, because of the high gas prices. In 

the other two scenarios, the consumption of natural gas increases. In the 

Natural Gas scenario, this results from the low gas prices and the leniency 

of climate policy, while in the Blue Hydrogen scenario the production of 

hydrogen through SMR requires significant amounts of gas. 

 

Figure 3.10 Total natural-gas demand, per scenario, 2018-2050 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5 Carbon emissions 

In both the Blue Hydrogen and the Green scenario, the total emissions of 

carbon reduce strongly, from the current level of about 150 Mton to 60 

and 20 Mton in 2050, respectively (Figure 3.11). Only in the Natural Gas 
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scenario, the carbon emissions increase because of the relatively strong 

growth in production volumes and low improvements in efficiency. In the 

Fossil Fuel scenario, coal-fired power plants obtain higher market shares 

in electricity generation, resulting in higher carbon emissions, but this 

effect is compensated by the lower growth in production volume and 

higher efficiency improvements compared to the Natural Gas scenario.20 

 

Figure 3.11 Total carbon emissions per scenario, 2018-2050 

 

 

  

                                                           
20 Note that the kinks that appear in the curves corresponding to the Blue 
Hydrogen and Green scenarios in the year 2030 results from the closure of the 
coal-fired power plants which is completed in that year. 
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4. Creating a market for hydrogen 

 

 

4.1 Introduction 

In the previous sections we have explored the economic conditions under 

which a market for hydrogen may evolve. The next question to address is 

to what extent such a market may develop automatically or whether some 

regulatory help is required. The framework for analysing this issue can be 

derived from microeconomic theory, which is described in Section 4.2. In 

this section, we also briefly describe the lessons which can be learned from 

the development of markets for natural gas and electricity.  In Section 4.2, 

we go to the hydrogen market and analyse the occurrence of market 

failures and the need for regulation.   

 

4.2 Analytical framework 

4.2.1 Perfect markets and market failures 

In economics, a market is defined as any structure that allows buyers and 

sellers to exchange any type of goods, services and information. All buyers 

and sellers that influence the price of a specific good, service or 

information are called market participants. In theory, in a well-

functioning market the goods are produced and allocated to users in the 

most efficient way. This means that the right mix of goods are produced 

by producers having the lowest costs and which are consumed by the 

consumers having the highest willingness-to-pay for these goods.  

 In case of a perfectly functioning market, a number of conditions have 

to be fulfilled. One of these conditions is that no market player is able to 

strategically influence the market outcome, which means that the market 

price is fully exogenous to the suppliers and consumers. As a result, in a 

perfectly competitive market the only option firms have to make higher 

profits is to either reduce their costs or to improve the quality of their 
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products and to sell the products to consumers having a higher 

willingness to pay for such products. Generally, one can say that the 

higher the number of producers in a market, the less firms are able to act 

strategically, but the relation between market structure (i.e. degree of 

concentration) and intensity of competition is not that straightforward. 

Moreover, no firm may have a strategic advantage over others because it 

is better able to access the market, for instance by using a specific 

infrastructure which cannot be used by others. In other words, all firms 

should operate in a level playing field. Another key condition that has to 

be realized in order to get perfect competition is the presence of full 

transparency. Producers and consumers need to know the relevant 

product characteristics and what the price and other conditions are for a 

market transaction.  

This theoretical notion of perfect competition is useful to have in mind 

as this can act as a benchmark when assessing actual markets. In practice, 

many markets suffer from fundamental shortcomings which prevent that 

the market results in an efficient allocation of goods. These fundamental 

shortcomings are called market failures. In theory, the following market 

failures can be distinguished: 

 negative externalities, which occur when economic agents do not take 

into account all costs of their activities. This may result in a too high 

level of activities from a social point of view. An example of this market 

failure is carbon emissions resulting from the use of fossil energy. 

 positive externalities, which may result in a too low level of activities as 

firms cannot capture all benefits of their activities. This may, for 

instance, occur if the benefits of innovation cannot be protected by the 

innovative firms. In that case, firms will not innovate enough.  

 network externalities, which may result in a limited number of 

suppliers capturing the full market and, as a result, other firms being 
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unable to enter the market. If network externalities exist in the market, 

market parties should coordinate how they want to organize the market, 

or a regulator should impose regulations on market design. 

 economies of scale and scope, which may result in structural positions 

of dominance (market power) and as a consequence, a too low level of 

activity. This may occur in case of activities with large fixed costs, such 

as investments in networks, which have as effect that one firm can 

conduct these activities more efficiently than several firms.   

 information asymmetry, which may result in so-called adverse 

selection. As an example, consumers are not prepared to pay their 

maximum price if they are uncertain about the true characteristics 

(quality) of a product. This may occur if consumers cannot fully assess 

the quality of a commodity and, as a result, they may not be inclined to 

pay the full price. If this market failure occurs, coordination or 

regulation is required, for instance by organizing a trustworthy 

certification scheme.  

 hold up, which may result in a too low level of investments because firms 

are uncertain about the ex post revenues once they have made an 

investment. This may occur in the case of long-term investments 

without long-term contracts with customers or without the existence of 

liquid markets. If this market failure exists, coordination or regulation 

is needed to give investors more certainty about the future revenues. 

4.2.2 Lessons from other energy markets 

If there are no fundamental shortcomings, markets just develop if 

individual supplies and consumers see opportunities to start exchanging 

goods and money. Energy markets, however, have some peculiarities 

hindering that these markets fully develop automatically without any 

help. The markets for electricity and natural gas have been liberalised over 

the past decades. In this process a number of themes can be distinguished: 
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regulation, restructuring, competition, the integration of domestic 

markets and the establishment of a liquid market place. 

With the liberalisation of a market, a main goal is to develop effective 

competition. However, sometimes, not every aspect of a market is well 

suitable for competitive behaviour. One factor which makes that parts of 

the market are not suitable for competition is the presence of natural 

monopolies. In electricity and gas markets, the networks are characterised 

by economies of scale, which makes them infeasible to create parallel 

networks. As a result, it is crucial for all potential network users to get 

access to the network which is called third party access (TPA). Another 

component of regulation is taking care of the network tariffs and to 

stimulate the network operators to be efficient and to maintain the quality 

of the network.  

 Although energy markets have monopolistic elements that cannot be 

eliminated by increasing competition, there are other elements that are 

well suitable for competition. To foster the entry of players in those 

segments of the market, authorities can choose to restructure the market 

in such a way that the monopolistic and competitive activities are not done 

by the same firm. This is called vertical unbundling of activities and is a 

well-known way to prevent conflict of interest. Another restructuring 

measure is the horizontal splitting of large incumbent firms in the 

competitive segments. Without this, incumbent firms may have excessive 

market power, which enables them to behave strategically, i.e. to raise the 

market price to the monopoly level.  A final form of restructuring is the 

privatisation of ownership of incumbent firms. Privatising the 

commercial elements of a sector gives those firms stronger incentives to 

be efficient. 

With the vertical unbundling of monopolistic segments and TPA, there 

is not automatically a competitive market. Effective market competition 
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can only be achieved when the number of firms active in the market is 

sufficiently high while consumers are able to make a choice for the 

supplier and product they prefer. The benefits of such effective 

competition are that the market price is more related to the marginal 

costs. 

 A regulatory measure that may further enhance competition is market 

integration. When regional markets become more integrated with each 

other, domestic firms are able to operate in other markets as well. This 

(potentially) increases the number of players in all the markets which will 

foster competition and, therefore, the final price will be a better reflection 

of costs. Next to improving competition, market integration may also 

result in higher productive efficiency:  firms with lower costs will replace 

those with higher costs. Second, and especially important in energy 

markets, there will be more flexibility to deal with demand or supply 

shocks.  

A market is called liquid when the price of a good traded is not 

noticeably affected by an individual’s action. The liquidity depends on the 

transaction costs market parties have to make and the confidence they 

have in the market system. The latter depends on transparency of the 

operation of the market, When these conditions are met, the market will 

attract more parties, increasing its volume and further improving its 

liquidity.  

 

4.3 Market failures in hydrogen market 

4.3.1 Supply chain 

In order to determine whether the development of a market for hydrogen 

may be hindered by fundamental shortcomings, we analyse for each 

component of the supply chain (see Figure 4.1) whether there are 

potential market failures like economics of scale, externalities, structural 
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lack of competition, information asymmetry or hold up situation, and how 

these could be overcome. If such failures are found, we explore potential 

regulatory solutions to address them.  

 

Figure 4.1 Supply chain of hydrogen  

4.3.2 Production 

To determine to what extent the production of hydrogen is characterised 

by economies of scale, we look at the required investments per MW of 

capacity (Figure 4.2). It appears that production of hydrogen can be 

compared to the production of electricity. Both commodities are 

secondary energy carriers, which means that they have to be produced by 

converting a primary energy carrier. The installations required to do this 

conversion require similar amounts of investment. An advanced 

combustion turbine gas plant requires about 0.5 million euro/MW, which 

is a bit less than the investment size of a SMR plant, while the investment 

in an electrolysis plant is equal to about 1 million euro/MW (Figure 4.1). 
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Coal-fired and in particular nuclear power plants are, however, way more 

capital intensive. 

 

Figure 4.2 Investment costs for hydrogen production through  
                     SMR and electrolysis in comparison with electricity  
                     production 

 

 

In addition, it appears that neither types of hydrogen production 

require specific locational circumstances. SMR plants need access to the 

gas network and electrolysis plants need access to the electricity grid and 

water network, but access to these networks is in principle everywhere 

available in the Netherlands. In case of SMR-blue also proximity to a 

transport-and-storage system for CO2 is required, and here they may be 

some locational constraints. 

The above implies that the supply side of hydrogen production needs 

no particular economic regulation as the relatively small scale of the 

production facilities and the absence of strong locational advantages 

prevent the occurrence of a natural monopoly. Hence, it will be sufficient 

to have the existing regulation of TPA to electricity and gas networks 

besides the general competition policy oversight to realise competition in 

the production of hydrogen.  
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4.3.3 Transportation 

The transport of hydrogen by pipeline, however, is characterised by scale 

economies and is therefore regarded as a natural monopoly. With large 

quantities of hydrogen, transport via pipelines is the most suitable and 

cost-efficient option (Figure 4.3). Although the capital costs of pipelines 

are high, the large quantities that can be transported (up to 9000 kg/h) 

and the relatively low operation costs make the costs per kg hydrogen 

small. For smaller quantities, however, the construction costs of a pipeline 

per unit hydrogen are simply too high, which means that in such a 

situation transport by trucks is more efficient.  

 

Figure 4.3 Investments in pipelines and trucks in relation to  
                      total transport capacity (in 1000 €/MW) 

 

When the hydrogen market evolves, like in the Blue Hydrogen or the 

Green scenario, transport will be done through pipelines. In such 

scenarios, it is not efficient to have more than a single network for the 
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transport of hydrogen, which means that competition cannot evolve in the 

transport business. The transport of hydrogen, therefore, needs to be 

subject to economic regulation, just as the transport of natural gas and 

electricity.  

 

4.3.4 Storage 

If hydrogen is used for producing heat in households and offices, the 

demand will be strongly related to the outside temperature.  If the 

temperature drops, the supply side should be able to increase its 

production in order to meet the demand. For competition to be effective 

under such circumstances, it is crucial to know how many facilities would 

be required and available to realise this increase in supply. In order to get 

an impression of the competitive situation in case of a cold winter period, 

we estimate the number of facilities required for various types of 

techniques. (Table 4.1) shows our assumptions we make this calculation. 

If there were no storage facilities available, the increase in supply 

should be realised by extra production by hydrogen plants. If there was a 

period of 14 cold winter days, then there would be a need of 60 extra SMR 

plants to realise the required extra supply of hydrogen to heat all houses 

(Figure 4.4). If storage were available in the form of salt caverns, then 

about 50 of them would be needed. However, if depleted gas fields could 

be used, then only 3 fields would be required. In the latter case a monopoly 

may easily occur if these fields were all operated by a single firm. In such 

case, regulation would be required in order to prevent that the flexibility 

to supply extra hydrogen during cold winter days is available to the 

market against reasonable prices. This regulation is comparable to the 

current regulation of storages in the natural-gas market. 
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Table 4.1 Assumptions to determine market situation in case  
                   of a period of 14 days cold weather 

Assumptions: value source 
average gas consumption household  
 normal day (m3) 3.4 CBS 
average gas consumption household  
 cold day (m3) 10.00  

number of households (millions) 7.9 CBS 

capacity SMR plant (GWh/h) 0.33 Collodi et al. (2017) 
capacity withdrawal salt cavern  
 (GWh/h) 0.39 Kruck et al. (2013) 
capacity withdrawal depleted gas field  
 (GWh/h) 7.8 Kruck et al. (2013) 

 

Figure 4.4 Number of installations needed to meet the heat  

                     demand during a period of 14 days cold weather 

 

 

4.3.5 Wholesale market 

A liquid wholesale market requires standardisation of products, low level 

of transaction costs, transparency on prices and market conditions, and a 

high volume of trade. The hydrogen market may learn from how the 

market for natural gas has developed over the past decade 
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Despite the differences in qualities of various sources of gas, the trade 

in natural gas is done in uniform units (in MW) which strongly facilitates 

trade.21 To sell the commodity as a homogenous product, each type of gas 

is valued in terms of the energy content it carries. This means that not the 

volume (like m3) of the gas is sold, but the amount of energy it carries 

since heating is the main purpose of gas.  

In order to reduce the transaction costs and increase the 

transparency of trade, a market hub called Title Transfer Facility (TTF) 

has been created. The TTF is a virtual hub based on an entry-exit system 

in which market parties can transfer gas already injected into the national 

grid to other parties.22 As long as the gas is within the system, it can 

change owner. It is common that gas ownership changes numerous times 

between entry and exit. This is the so-called churn rate which has 

increased strongly over the past years, thereby indicating a highly liquid 

market (Figure 4.5).  

One factor behind the liquidity of the TTF is the high quantities 

supplied relative to the quantities demanded (Figure 4.6). The total 

supply to the Dutch natural-gas market has been about twice as high as 

the total Dutch gas consumption, while in most other countries this ratio 

is much lower. 

  

                                                           
21 Natural gas is a heterogeneous product as, the precise characteristics of the gas 
differ from field to field. These characteristics are measured through the so-called 
Wobbe-index, which indicates the thermic value of the gas. Broadly speaking, the 
product natural gas can be separated into two categories: low- and high-calorific 
gas. Low-calorific gas contains a higher percentage nitrogen than high-calorific gas 
resulting in a lower Wobbe-index. Hence, the thermal energy stored in a unit of 
low-calorific gas is lower than in the same unit of high-calorific gas. 
22 Actually, the TTF also facilitates trade in ownership rights of gas that is not yet 
injected into the grid. 
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Figure 4.5 Churn rates of a number of natural-gas hubs,  
                           2008- 2016 (average per year) 

Source: Heather & Petrovich (2017) 

 
Figure 4.6 Ratio Supply/Domestic consumption of natural gas 
                      in a number of European countries, 2010/2017 

Source: IEA (2018) 

 

Hence, in order for a liquid hydrogen market to emerge in the 

Netherlands, there should be more supply coming to this market, which 

can be traded and re-exported. What could be international sources of 
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supply of hydrogen to the Dutch market? It is often said that hydrogen 

could be produced through electrolysis in North-Africa and then 

transported to the Netherlands. The question is, however, what the 

required hydrogen price should be in the Netherlands (say, the 

Maasvlakte) to make such import profitable. In order to get an impression 

of this price, we have made a calculation based on a number of 

assumptions derived from the literature (Table 4.2). 

 
Table 4.2 Assumptions on supply of hydrogen from North- 
                   Africa 

Assumptions Value Source 

distance Netherlands - North-Africa 3300  

CAPEX onshore pipelines (€/kg) 0,48 Krieg (2012) 

ratio CAPEX offshore/onshore 2,00 
Cornot-Gandolphe 
(2003); figure 6 

variable transportation costs (€/kg) 0,31 Krieg (2012) 

fixed production costs hydrogen (€/kg) 0,54  

gas price Netherlands (€/MWh) 20  

water costs (€/kg) 0,05 5 times as high as in NL 

electricity use (MWh/kg) 0,05   
Note: Total transport costs per kg are € 1.27, which is almost similar to what 
Amos (1998) found (€ 1.42) 

 
Figure 4.7 depicts the required price in the Netherlands of hydrogen 

produced in North-Africa through electrolysis. A crucial assumption in 

this calculation is the price of electricity in this region. If we assume that 

this electricity price is 5 euro/MWh, which is about 25% of the current 

price in that region now, then the required hydrogen price would be about 

2 euro/kg. upon arrival in the Netherlands. This required price would be 

higher than that required for SMR-blue, even if the price of CO2 would be 

100 euro/ton. Hence, we conclude that hydrogen produced in North-
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Africa is not a competitive alternative and cannot be part of extra supply 

to a Dutch hydrogen market.  

Figure 4.7 Required hydrogen price for hydrogen 
                     produced in North-Africa and transported to the  
                     Netherlands and for blue hydrogen produced in the 
                     Netherlands (for different carbon prices) 

 

 
4.3.6 Retail market 

Consumers may have different preferences for the type of hydrogen, just 

as they have different preferences for various types of electricity and gas. 

The economics of the transport of hydrogen, however, make it that it is 

not efficient to have alternative transport infrastructures. All hydrogen 

coming from different sources (SMR-grey, SMR-blue, SMR-green, 

Electrolysis-grey, Electrolysis-blue or Electrolysis-orange) will have a 

standardized physical quality and transported through the same 

infrastructure. 
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Users who prefer a specific physical quality (i.e. pureness) of 

hydrogen, may need to convert the hydrogen to a different quality level 

upon arrival of the hydrogen at their location. This will likely only hold for 

chemical industries who use the hydrogen for feedstock. Most users, 

however, will use the hydrogen for heating and they only have to adapt 

their appliances to the hydrogen quality transported through the network.  

A more important distinction in quality is related to the way the 

hydrogen is produced, as consumers may have a preference of green or 

even orange hydrogen. This quality is not related to the physical 

characteristics of hydrogen, but to how ‘sustainably’ it is produced. In 

order to facilitate these consumers a certificate system is required, just as 

it currently exists for electricity and gas based on the European system of 

Guarantees-of-Origin. 
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5. Concluding remarks 

 

 

5.1 Introduction 

Hydrogen is increasingly seen as an energy carrier that can help to 

decarbonize energy systems. It may offer flexibility to the electricity 

system by converting electricity into hydrogen at times when the 

generation of electricity by renewable sources exceeds the demand for 

electricity. This hydrogen can be used to produce electricity again at other 

times when renewable sources are not able to generate sufficient 

electricity to meet demand. Hydrogen production on offshore locations 

where also the renewable electricity is generated may result in lower 

system costs because transporting gases is less expensive than 

transporting electricity. This hydrogen may be used for heating in 

buildings and for chemical processes in the industry. In these applications 

of hydrogen, it may help these sectors to decarbonize without the need to 

make major investments themselves. 

In this paper, we have analysed the economic factors that affect the 

outlook for a hydrogen market in the Netherlands. This analysis was 

directed at three aspects: a) the factors that determine the business case 

of alternative options to make hydrogen, b) the factors that determine the 

quantitative outlook of hydrogen markets and c) the need for specific 

regulatory measures to foster the hydrogen market. 

 

5.2 Business case of hydrogen 

The business cases of alternative options to produce hydrogen are 

strongly determined by the (expected) prices of the inputs used in the 

production process. For SMR, the gas price is crucial and for electrolysis 

the electricity price is the major factor. Based on our analysis in this 

report, we formulate the following conclusions: 
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 At the market prices of natural gas and electricity which we have seen 

in the past decade, SMR hydrogen is much more attractive than 

electrolysis hydrogen. At the current gas price of about 20 euro/MWh, 

the electricity price should be less than half of the current electricity 

price (which is about 45 euro/MWh) to make electrolysis more 

favourable than SMR. This conclusion is robust against more optimistic 

assumptions on higher efficiencies and lower investment costs of 

electrolysis plants. 

 This conclusion hardly changes when we compare electrolysis hydrogen 

with SMR hydrogen where the carbon is captured and stored (CCS) 

which results in so-called blue hydrogen. At current market prices, blue 

hydrogen is way more favourable than electrolysis hydrogen. It also 

appears that blue hydrogen becomes even more favourable than SMR 

hydrogen without CCS (so-called grey hydrogen) when the price of CO2 

is above 30 euro/ton.  

 Hydrogen produced through electrolysis is not only more expensive 

than hydrogen produced through SMR, it also faces several difficulties 

as a tool for climate policy. One of these difficulties is that an efficient 

climate policy requires a relatively high carbon price, but a higher 

carbon price raises the electricity price which makes electrolysis more 

expensive. This effect occurs because gas-fired power plants set the 

electricity price during many hours in a year. This effect will remain also 

when the share of renewables is much higher, as investors in renewable 

electricity need these hours of high prices in order to recoup their 

investments. The higher the share of renewables, the smaller this effect 

will become though. 

 Another factor why electrolysis creates challenges for climate policy is 

that low electricity prices, which are necessary for electrolysis to be 

profitable, are an incentive for all energy users to consume more 
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electricity, while climate policy just needs a reduction of energy 

demand. In addition, when the electricity price is low, then it is 

reasonable to expect that other sectors will tend to switch to using 

electricity for their energy-related activities, such as households 

switching to heat pumps and full-electric cars. Hence, in a situation of 

low electricity prices, the demand for electricity likely surges. In our 

quantitative exploration, we find that the total Dutch electricity 

consumption may more than double.  This would require a tremendous 

increase in installed capacity of renewable generation as otherwise the 

electrification would raise the carbon emissions. Such an increase may 

not be realistic given all kind of restrictions which may pop up when the 

scale of renewable generation increases. 

 This is not the only way by which electrolysis competes with other 

sectors that want to decarbonize. Hydrogen produced through 

electrolysis is often referred to as green hydrogen when the electricity 

is produced by renewable sources. There are, however, many firms in 

other sectors (but also households) that also want to claim that they use 

green electricity. In order to be able to make such claims these firms 

buy green certificates (guarantees of origin). In the recent years, the 

prices of these certificates have risen, in particular for the certificates 

that refer to renewable electricity production in the Netherlands. 

Hence, green hydrogen production raises the costs for other firms that 

want to buy green electricity which implies that a number of these firms 

(and households) will not be able to use green electricity because of the 

extra demand by electrolysis plants. 

 If an electrolysis plant is directly connected to a wind turbine or solar 

panel, then there is no need to buy green certificates as the origin of the 

electricity is clear. However, in such a setup, there is another 

disadvantage. When an electrolysis plant can only use electricity which 
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is generated by a specific wind turbine, for instance, the production 

becomes related to weather circumstances and, hence, way more 

volatile. This strongly reduces the efficiency as well as the number of 

operating hours, which raises the required revenues per unit of 

hydrogen in order to be able to recoup the investments. This 

disadvantage of this setup exceeds the potential benefits of not having 

to make costs for electricity grid extensions and green certificates.  

 Importing green hydrogen from countries, like North-Africa, where the 

conditions for solar power are way more favourable, does not seem to 

be profitable as well. The costs of transporting this hydrogen to the 

Netherlands make that the required hydrogen price of this imported 

hydrogen is likely higher than the price of alternatives. 

 Despite these challenges for electrolysis, a future in which hydrogen is 

produced in this way is conceivable. When the international gas 

markets become tight, with high natural-gas prices as result, and when 

massive investments in renewable electricity generation are made, with 

many hours of low electricity prices as result, electrolysis may become 

the most efficient way of making hydrogen.  When also the industrial 

use of natural gas is taxed like it is now done for households in the 

Netherlands, the industry will have a strong incentive to substitute 

away from natural gas to hydrogen.  

 When these conditions are not met, blue hydrogen may be an efficient 

alternative to decarbonize a significant part of the Dutch economy. Key 

economic conditions for blue hydrogen to become profitable are a low 

price of natural gas and a price of CO2 which is at least 30 euro/ton.  

5.3 Future outlook 

The future outlook for hydrogen depends, of course, strongly on the 

storylines regarding the future driving factors. We have defined two key 

driving factors: the tightness of the global natural-gas market and the 
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stringency of (inter)national climate policy. In a scenario with a tight 

global gas market and stringent climate policy, green hydrogen will be the 

most favourable type of hydrogen, while in a scenario with a loose global 

gas market with a stringent climate policy, blue hydrogen is more likely. 

In the other circumstances (scenarios), the hydrogen market remains 

dominated by grey hydrogen. For these scenarios, we have the following 

outlook: 

 In the scenarios with favourable conditions for green hydrogen or blue 

hydrogen, the total production of hydrogen increases strongly. This 

holds in particular for a scenario in which blue hydrogen is most 

favourable. In this scenario, total consumption could increase from the 

current 120 PJ to about 1000 PJ in 2050. In the scenario where green 

hydrogen is favourable, the total consumption is estimated at a much 

lower level: 500 PJ in 2050. This is due to the fact that in a scenario in 

which electrolysis is attractive because of low electricity prices, 

electrification is also attractive. Hence, green hydrogen has to compete 

with heat pumps in buildings and with full-electric cars in transport. 

 In both scenarios, the total carbon emissions may reduce dramatically, 

which shows that hydrogen can indeed be an effective energy carrier to 

decarbonize the economy. Decarbonisation does not imply a strong 

reduction of the use of fossil energy, as is shown by a scenario where the 

use of blue hydrogen strongly increases. In this scenario, the total 

consumption of natural gas increases as well.  

5.4 Creating markets 

The need for specific regulatory measures to create a Dutch hydrogen 

market depends on the existence of structural shortcomings (market 

failures). It appears that the market for hydrogen is quite similar to the 

electricity market with regard to the production side, while for the 
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transportation side and the wholesale trade, the hydrogen market can be 

well compared to the natural-gas market. For the market failures and 

need for regulation we conclude the following: 

 In the production of hydrogen there is a clear market failure when the 

carbon emissions are not priced correctly. Introducing a (implicit) 

carbon price that is related to the social marginal costs of climate 

change would solve this market failure.  

 The transport of hydrogen shows clear economies of scale resulting a 

natural monopoly for a pipeline infrastructure. This monopoly should 

be regulated in the same way the current natural-gas network is 

regulated. 

 The storage of hydrogen may also show the risk of a natural monopoly 

when it is possible to store hydrogen in depleted gas fields. When the 

hydrogen is stored in salt caverns, however, then there will likely be 

many facilities and active firms which may result in sufficient and 

effective competition. 

 A wholesale market for hydrogen will not develop automatically, as a 

number of conditions have to be satisfied, just as we have seen in the 

natural-gas market. The products need to be standardized, transport 

capacity should be available for traders, while there should also be 

sufficient volumes in order to get a liquid market.  As we have seen 

above, it is not likely that this volume will come from hydrogen 

produced in for instance Africa or the Middle-East because of the high 

costs of transportation.  

 In the retail market, regulation is required to enable consumers to buy 

hydrogen produced by different sources. Such a regulation can be 

similar to the system of guarantees-of-origin in the natural-gas and 

electricity markets.  
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Appendix A The current hydrogen market 

The total European consumption of hydrogen in 2010 is estimated at 7 

Mtons, which is equal to about 1.3% of total European energy 

consumption (Certifhy, 2015). 23 The current hydrogen consumption 

almost completely consists of demand from industrial users. The main 

components of industrial demand are: chemical, refining, metal working 

and other industrial use. These components have a relative share of 63%, 

30%, 6% and 1% of industrial consumption. 

The main chemical applications of hydrogen in the chemical segment 

are in the production of ammonia (84%) and methanol (12%). A 

representative ammonia plant needs between 57,500 to 115,000 tons of 

hydrogen per year, where this is around 266,000 tons/ year for a 

methanol plant (Certifhy, 2015).  

In refining, the hydrogen is used to crack the heavier crudes and 

produce lighter crudes. This feedstock demands a high purity of the 

hydrogen as it is crucial for the utilization (Certifhy, 2015). A typical plant 

uses hydrogen in a range of 7,200 – 108,800 tons/tear.  

In the metal processing segment hydrogen is used to realise iron 

reduction. The market share of 6% is an equivalent to 410,000 tons with 

a single plant using up to 720 tons/year (Air Liquide, 2004).  Table A.1 

gives an overview of the industrial usage and their main players.  

The current consumption in the markets for mobility and power-to-

gas is negligable. However, both are expected to play an increasing role in 

hydrogen demand in the future (Certifhy, 2015; CE Delft, 2018; TKI 

Nieuw gas, 2018). In the mobility sector, the use of hydrogen is limited to 

heavily subsidized pilot projects. The slow introduction of technology and 

                                                           
23 Assuming an energy equivalent of 130MJ/kg H2, this is 910 PJ. This adds up to 
roughly 1.3% of total European energy consumption. Total energy consumption in 
2015 was 68,119 PJ (Eurostat).  
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infrastructure can be identified as one of the reason of the low rate of 

implementation (Certifhy, 2015).  

 

Table A.1 Overview of current hydrogen use in Europe, per  
                   segment 

Segment Key applications Accumulated H2 
demand 

Key player(s) 

Chemical Ammonia 
production 

4.3 Mtons Yara (fertilizer 
supplier) 

Methanol Methanex and 
Sabic 

Others DuPont, BASF, 
Lanxess, DSM 
and Bayer 
Material Science 

Refineries Hydro-cracking & 
Hydrotreating 

2.1 Mtons BP, Total, Shell 
and EXXON 

Metal 
working 

Iron reduction 0.41 Mtons Arcelor Mittal 

Source: Certifhy (2015) 

The current supply of hydrogen consists of two main types: on-site 

production and as a by-product in chemical processes. On-site production 

is done by the large consumers in the chemical industry and composes 

64% of total European hydrogen production (Certifhy, 2015). Hence, for 

this type production, the hydrogen is not sold but directly used by the 

producer. Another 27% of the hydrogen production is produced as 

residual product in chemical processes. This hydrogen is sold through 

bilateral contracts.  This market is shallow, meaning that the number of 

transactions and number of players are small.  

Because of this, the hydrogen market is not transparent (Certifhy, 

2015). There is no database yet of prices and transactions. As a result, the 

price of hydrogen is likely highly dependent on the local market 

situations. Hence, a global (regional or national) price of hydrogen does 

not exist.  
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Hydrogen is increasingly seen as the energy carrier of the future as it has the 
potential to replace natural gas for heating and electricity production while 
it can also be used as a fuel in transport and as feedstock in the industry. The 
potential of hydrogen as a key energy carrier has been analysed extensively from 
a technical-engineering perspective, but less attention has been paid, however, to 
the economic conditions behind the supply of hydrogen and the design of markets 
for hydrogen.
In this paper the authors explore the economic outlook for various types of 
hydrogen production, its transportation and storage in the Netherlands. They 
also develop scenarios based on the key economic drivers for hydrogen, which 
are the tightness of international energy markets and the stringency of (inter)
national climate policy. For the scenarios in which hydrogen supply and demand 
may grow strongly, they finally analyse the design features for a well-functioning 
hydrogen market.
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